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Abstract. Measurements of the aerosol size distribution
from 11 nm to 2.5 microns were made in Mexico City in
March 2006, during the MILAGRO (Megacity Initiative: Lo-
cal and Global Research Observations) field campaign. Ob-
servations at the urban supersite, referred to as T0, could of-
ten be characterized by morning conditions with high particle
mass concentrations, low mixing heights, and highly corre-
lated particle number and CO2 concentrations, indicative that
particle number is controlled by primary emissions. Average
size-resolved and total number- and volume-based emission
factors for combustion sources impacting T0 have been de-
termined using a comparison of peak sizes in particle number
and CO2 concentration. Peaks are determined by subtract-
ing the measured concentration from a calculated baseline
concentration time series. The number emission and vol-
ume emission factors for particles from 11 nm to 494 nm are
1.56×1015 particles, and 9.48×1011 cubic microns per kg of
carbon, respectively. The uncertainty of the number emission
factor is approximately plus or minus 50 %. The mode of the
number emission factor was between 25 and 32 nm, while
the mode of the volume factor was between 0.25 and 0.32
microns. These emission factors are reported as log normal
model parameters and are compared with multiple emission
factors from the literature. In Mexico City in the afternoon,
the CO2 concentration drops during ventilation of the pol-
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luted layer, and the coupling between CO2 and particle num-
ber breaks down, especially during new particle formation
events when particle number is no longer controlled by pri-
mary emissions. Using measurements of particle number and
CO2 taken aboard the NASA DC-8, the determined primary
emission factor was applied to the Mexico City Metropolitan
Area (MCMA) plume to quantify the degree of secondary
particle formation in the plume; the primary emission factor
accounts for less than 50 % of the total particle number and
the surplus particle count is not correlated with photochem-
ical age. Primary particle volume and number in the size
range 0.1–2 µm are similarly too low to explain the observed
volume distribution. Contrary to the case for number, the ap-
parent secondary volume increases with photochemical age.
The size distribution of the apparent increase, with a mode at
∼250 nm, is reported.

1 Introduction

1.1 Motivation

Numerous studies have shown the adverse effects of partic-
ulate matter (PM) on human health, with increased interest
placed on ultrafine particles which become more toxic per
unit mass with decreasing size (Mills et al., 2009; Ober-
dorster et al., 2005; Osornio-Vargas et al., 2003; Delfino et
al., 2005). Atmospheric aerosols are known to affect the cli-
mate system by altering cloud properties, often referred to
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as the indirect effect (Lohmann and Feichter, 2005). Cur-
rently, the indirect effect of aerosols on climate is highly un-
certain and limits our understanding of climate sensitivity to
anthropogenic perturbations (IPCC, 2007). Uncertainty of
the indirect effect is in part attributed to the uncertainty in
the number of cloud condensation nuclei (CCN), or the par-
ticles on which cloud droplets form. Whether a particle will
act as a CCN or not depends on the particle size, compo-
sition, and water-vapor supersaturation. Particles are intro-
duced into the atmosphere either by direct emissions (pri-
mary particles) or homogeneous nucleation of low volatil-
ity species (secondary particles). Primary particles are intro-
duced into the atmosphere at generally larger sizes (10 nm or
greater) when compared to secondary particles (Pierce and
Adams, 2009). Some particles are emitted at CCN active
sizes, while others must first grow in size through coagula-
tion and condensation. Nucleated particles begin as molec-
ular clusters, and require substantial growth to become large
enough to act as CCN. The dynamic evolution of the particle
size distribution involves competition between coagulation,
condensation, and nucleation. Primary and secondary par-
ticles vie for growth through condensation of low volatility
gas phase species, which can also homogeneously nucleate
to form new particles as previously mentioned (Wang and
Penner, 2009). Therefore, any uncertainty in the size distri-
butions or rates of primary emissions or of secondary particle
formation may lead to large uncertainty in the predicted CCN
concentration (Adams and Seinfeld, 2002).

Although accurate knowledge of the size distribution and
number concentration of atmospheric particles has been de-
termined to be critical for prediction of CCN concentration,
global models representing aerosol number concentration as-
sume the number and size of particles from mass emissions
(Chang et al., 2009; Pierce and Adams, 2007; Yu et al.,
2010), due to the fact that inventories of anthropogenic emis-
sions are based on mass rather than number concentration.
While size-resolved emission factors are increasingly avail-
able, they are often determined from source-based tests or
from vehicle tunnel studies. Here, we recover a size re-
solved number-based emission factor representative of Mex-
ico City urban emissions. Both the emission factor itself, and
the method of its recovery (particularly if refined using fast
number size distribution measurements), may be valuable for
continued refinement of size resolved emission factors.

1.2 Background

Mexico City is the largest city in North America, with a pop-
ulation of over 20 million people. Nearly 40 million liters
of fuel are consumed each day, producing thousands of tons
of pollutants (Molina et al., 2008). The city is located in the
basin of the central Mexican plateau (19.5◦ N) at an altitude
of approximately 2200 m above sea level, with mountains
to the south, west, and east. The topography and meteorol-
ogy of this area reduce ventilation of pollutants, especially in

the morning before the boundary layer has increased to lev-
els where coupling with the gradient regional wind occurs,
thereby contributing to the persistent air quality problems in
this area (Jauregui, 1988; de Foy et al., 2006).

The air pollution in the Mexico City Metropolitan Area
(MCMA) has been the topic of numerous studies. Raga and
colleagues have provided an observational summary of stud-
ies conducted from 1960–2000, and concluded that the lim-
ited measurements of aerosols and their transport from ma-
jor source areas was highly insufficient for understanding the
evolution and environmental impacts of aerosols. This lack
of information about the physical characteristics of aerosols
motivated a study in 1997 by Baumgardner et al. (2000).
Their measurements, taken from a mountain site in the south-
west portion of the basin, concluded that a large fraction of
the measured aerosols were from primary emissions based on
a positive correlation with CO. High nighttime aerosol num-
ber concentrations were suggestive of recirculation within
the basin that would further impact pollutant levels. In the
spring of 2003, a large scale field campaign was conducted
(MCMA-2003) which contributed to the understanding and
improvement of air quality in Mexico City. Dunn and col-
leagues (2004) conducted measurements of the aerosol size
distribution from 3–48 nm in two locations in the Mexico
City area; a rural site in the mountain pass in the southeast
corner and another in the city’s center. New particle forma-
tion events were observed on 3 of 10 days sampled. At the
urban site, high concentrations of 15–25 nm particles corre-
lated with high levels of NOx and CO and sudden decreases
in condensational surface area preceded the new particle for-
mation events (Dunn et al., 2004). Related measurements
showed the significance of secondary organic and inorganic
aerosol production and its contribution to particulate matter
concentrations (Volkamer et al., 2006). Salcedo et al. (2006)
reported that the organic mass fraction of PM2.5 as measured
at the CENICA site in southeast Mexico City is on aver-
age 56 %, with inorganics representing 28 % (Salcedo et al.,
2006). The mass distribution was dominated by an internally
mixed accumulation mode, and a smaller externally-mixed
mode that was concluded to be related to traffic emissions
(Molina et al., 2007).

Similar results were obtained during the MILAGRO
(Megacity Initiative: Local and Global Research Observa-
tions) field campaign in 2006. The size distribution and com-
position of particles from 10 to 33 nm was measured north-
west of the city in Tecamac by Smith and colleagues (Iida
et al., 2008; Smith et al., 2008). Results from a case study
of one new particle formation event suggest that the freshly
nucleated particles are comprised of more organics than sul-
fates and that organic compounds play a dominant role in
the growth of particles at this location (Smith et al., 2008).
Using data collected onboard the NSF/NCAR C-130 with
HR-ToF-AMS, DeCarlo and colleagues determined that or-
ganic species dominated submicron aerosol near the pollu-
tion source and in the outflow and regional air (DeCarlo et al.,
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2008). Ground based measurements performed by Aiken et
al. using HR-ToF-AMS also concluded that organic aerosol
comprises half of the mass of fine particulate matter (Aiken
et al., 2009). Source apportionment of fine organic aerosol
determined that primary emissions from motor vehicles con-
sistently account for half of the organic carbon in the urban
area (Aiken et al., 2009).

The evolution of the size distribution and composition of
aerosols over the Mexico City basin was measured by Klein-
man and colleagues (Kleinman et al., 2008, 2009). Mea-
surements taken aboard the DOE aircraft sampled aerosols
with photochemical ages ranging from fresh emissions to day
old air masses. Findings included that a 5-fold increase in
aerosol volume per CO as a result of 0.5–1 day of processing
is due to more accumulation mode particles in aged plumes,
rather than larger particles and that the increase in accumula-
tion mode particles was due to condensational growth from
Aitken mode particles, rather than volume growth (Kleinman
et al., 2009).

The air quality in the basin during the MILAGRO 2006
campaign was compared to 10 years of data collected by
Mexico City’s automatic monitoring network (RAMA), and
it was concluded that PM2.5 and PM10 levels were mostly
within their usual range (de Foy et al., 2008). PM10 maxi-
mum loadings occurred at either the end of the morning or
the end of the afternoon and PM2.5 concentrations peaked
around noon. The average PM2.5 and PM10 levels measured
at T0 were 40 µg m−3 and 56 µg m−3, respectively, and were
markedly impacted by traffic emissions during rush hours
(Querol et al., 2008). Measurements of PM at multiple lo-
cations in parallel suggest that variability in PM levels and
composition may be determined largely by atmospheric mix-
ing and mixed layer height rather than by emission sources
(Querol et al., 2008).

The quantification of particulate emissions from com-
bustion sources is important for multiple reasons includ-
ing generation of emission inventories for the development
of air management and control strategies, examination of
specific sources on compliance with standards, and assess-
ment of personal and environmental exposures (Zhang and
Morawska, 2002). Because many of the health and climate
effects associated with atmospheric particles are influenced
by size, particle emission factors should also be size re-
solved. Emission factors and inventories have been compiled
for Mexico City; however no reports of a size resolved parti-
cle number-based emission factor exist to date.

Size-resolved emission factors can be measured in various
ways. Dynamometer tests are often performed in controlled
settings (Ristovski et al., 1998), but may not be representa-
tive of fleet average emissions under real world dilution and
engine load conditions. On-road techniques have the advan-
tage of sampling a wide range of vehicles with varying loads
and speeds under real-world dilution conditions and can be
measured from a mobile laboratory or at a stationary location
(Zavala et al., 2009; Kolb et al., 2004; Jiang et al., 2005).

On-road emission factors are commonly determined using a
stationary control volume, such as a roadway tunnel where
emission factors can be calculated using a mass-balance ap-
proach (Jamriska and Morawska, 2001; Geller et al., 2005).
This method has the advantage of providing fleet averaged
emission factors over a large number of vehicles; however
difficulties arise when sampling smaller particles. The re-
duced dilution of a control volume may change evolution of
the size distribution and influence the applicability of the re-
covered size distribution (Kristensson et al., 2004).

An effective method for determining a fuel-based, size-
resolved, submicron particle emission factor uses the rela-
tionship between particle emissions to emission of a co-
emitted gaseous pollutant (Janhall and Hallquist, 2005;
Jiang et al., 2005). Carbon dioxide is the primary carbon-
containing product of fuel combustion and can provide an
estimate of the amount of fuel burned (McGaughey et al.,
2004). Relating features (i.e. peaks) in the time series of a
pollutant concentration (e.g. particle number) to correspond-
ing peaks of CO2 and CO, allows for the emission ratio to be
expressed in units of particles per mole of the gaseous com-
pound or related to the carbon content of fuel and expressed
as amount of pollutant emitted per unit of fuel consumed.
Alternately, if the fleet average fuel economy is known or
estimated, emission factors can be expressed per vehicle km.
This method of determining fuel-based particle emission fac-
tors has previously been used in various locations (Kirch-
stetter et al., 1999; Westerdahl et al., 2009; Kittelson et al.,
2004; Ning et al., 2008). In this study, the observed corre-
lation between particle number and CO2 concentrations was
exploited in order to determine an average size resolved num-
ber based emission factor for Mexico City. Rather than a re-
gression of total number or a size fractionated number upon
CO2 concentrations, a method was used to identify peaks of
CO2, and then to determine their corresponding paired peak
in particle number. The baseline (against which the peaks
were determined) was calculated using a successive moving
average method as described by Watson and Chow (2001).
This method should be robust even in the presence of slowly
varying baseline concentrations of CO2 or particle number.
Key questions for this data analysis were the robustness of
the method to new particle formation events, the uncertainty
in the recovered emission factor, how the emission factor
would compare with other vehicular emission factor studies,
whether sources could be identified according to wind direc-
tion or source class, and how the recovered emission factor
would compare with gas and size-resolved aerosol measure-
ments in the megacity plume.

The technique as employed does not recover source-
specific emission factors (e.g. on-road spark ignition, on-
road diesel, coal combustion, etc.). However, it recovers the
average emission factor over multiple combustion sources.
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Figure 1. University of Iowa RH-controlled inlets and sizing instrumentation. 
  
 
 

Fig. 1. University of Iowa RH-controlled inlets and sizing instrumentation.

2 Instrumentation

Observations were made by the University of Iowa and by the
Department of Energy Brookhaven National Laboratory in
Mexico City during the MILAGRO field campaign in March
2006, in order to characterize the T0 urban size distribution,
to study the primary emissions around T0, and to charac-
terize new particle formation and ultrafine particle growth.
From 7 March to 29 March, measurements were taken at the
T0 research location, one of the three supersites selected for
the campaign. The T0 location was located inside the Insti-
tuto Mexicano del Petróleo (IMP) in the northwestern part of
the basin, which is an urban background site influenced by
fresh roadway traffic emissions, residential emissions and at
times local industrial emissions. Instrumentation used in this
work is listed in Table 1.

Two datasets of particle size distribution are used in this
work. The University of Iowa operated a Scanning Mobility
Particle Sizer (TSI 3081) and an Aerodynamic Particle Sizer
(TSI 3321), with relative humidity controlled inlets (Stanier
et al., 2004), as shown in Fig. 1. The SMPS measured the
size distribution from 10.9 nm to 478 nm at 5 min intervals,
while the APS measured the distribution from 0.542 µm to
19.8 µm at 20 s intervals. J. Wang of Brookhaven National
Laboratory operated an SMPS system which measured the
size distribution from 15 to 494 nm at 2 min intervals (Wang

et al., 2003). The Iowa SMPS and APS switched every 5 min
between a dried (typically<20 % RH) configuration and a
not dried configuration. The not dried configuration was in-
tended to sample aerosols at ambient RH, however due to
the increased temperature of the building housing the instru-
ments relative to ambient conditions, the sample was dried
before reaching the detector. The average ambient relative
humidity was 43.3 % (±23.2 %) and the average relative hu-
midity in the “not dried” sample line was 19.1 % (±6.9 %) In
this work, the “not dried” channel is used for both the SMPS
and APS analysis. The relative humidity (RH) of the BNL
SMPS sample flow was always below 30 % during MILA-
GRO, and was below 25 % for a vast majority of the size
distribution measurements, suggesting sampled aerosol par-
ticles were effectively dry. The BNL SMPS was calibrated
using polystyrene latex standards. Data from the BNL SMPS
were reduced using the data inversion procedure described by
Collins et al. (2002).

CO2 and meteorology measurements were made using a
Licor LI-7500 CO2 analyzer, which measured ambient CO2
concentrations from an open field in the middle of the IMP,
approximately 150 m away. The location of the CO2 moni-
tor with respect to the particle sizing equipment is shown in
Fig. 2.
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Table 1. Measurements used in the data analysis for this work.

Instrument Group (PI) Measurement Temporal
resolution

Aerodynamic Particle Sizer
(TSI Inc., 3321)

University of Iowa
(C. Stanier)

Size distribution from
0.542 µm to 19.8 µm

20 s

SMPS (TSI Inc., 3081) University of Iowa
(C. Stanier)

Size distribution from
10.9 nm to 478 nm

5 min

SMPS (TSI Inc., 3081) Brookhaven National Lab
(J. Wang)

Size distribution from
15 nm to 494 nm

2 min

LI-COR LI-7500 University of Iowa
(W. Eichinger)

CO2 1 s

Integrating Nephelometer
(TSI Inc., 3563)

Department of Energy
(N. Marley)

Aerosol scattering at 450,
550, and 700 nm

Vaisala WXT510 Department of Energy
(N. Marley)

Wind speed and direction 1 min 40 s

Thermo Andersen PM2.5 Beta
Attenuation Monitor (CAM,
SJA),
TEOM 1400a-FDMS 8500
PM2.5 (MER)

Mexico City Ambient
Air Monitoring Network
(RAMA)

PM2.5 Hourly

Modified LI-COR 6252 ana-
lyzer

NASA (S. Vay) CO2 (DC-8 aircraft) 1 s

Modified DMA NASA (A. Clarke) Particle number
(DC-8 aircraft)

Canister samples of trace
gases

UC Irvine (D. Blake) Benzene, Toluene (DC-8 air-
craft)

1–2 min
4–5 min

For evaluation of the particle number and particle volume
time series, comparisons to nephelometer measurements of
light scattering at 700 nm (Marley et al., 2009) was used.
Comparisons to hourly PM2.5 readings from the Mexico City
ambient air monitoring network were also used (RAMA, Red
Automatica de Monitoreo Atmosferico).

The measurement of wind speed and wind direction used
in this analysis was obtained by the Department of Energy
(N. Marley) at the T0 location using a Vaisala WXT 510
weather transmitter.

In order to apply the emission factor to the MCMA plume
downwind of the city, measurements of aerosol size distribu-
tion and CO2 obtained via aircraft were required. The mea-
surements of the aerosol size distribution used in this work
were obtained onboard the NASA DC-8 aircraft by the Uni-
versity of Hawaii group HiGEAR using a modified long dif-
ferential mobility analyzer (10 nm–400 nm) (Roberts et al.,
2010). Sampling was conducted through an NCAR solid dif-
fuser inlet under dry instrument conditions (less than 30 %
RH). A modified LI-COR (6252) non-dispersive infrared gas
analyzer was used to determine the CO2 mixing ratios and

was operated under constant pressure (Vay et al., 2003).
Measurements of benzene and toluene, used here to approxi-
mate plume age, were obtained using whole air samples col-
lected by D. Blake (UC Irvine). Samples were collected in
stainless steel canisters and analyzed at the UC Irvine labo-
ratory within 7 days of collection (Baker et al., 2008).

3 Data analysis techniques

The Iowa SMPS number size distribution data used in this
work were corrected for inlet losses, which occurred due to
the tubing and valves required for the alternating drying of
the sample (e.g. 32 % transmission was estimated at 15 nm,
and 93 % transmission at 102 nm). The BNL SMPS was de-
signed to measure the size distribution and concentration of
aerosols at T0 without additional processing and therefore
had a shorter inlet, less upstream valves and fittings, and a
higher efficiency. The BNL inlet efficiency was calculated
using the flow rates and tubing lengths of the sampling line
as described in Wang et al. (2002) and applied to correct
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Figure 2. Aerial view of the T0 research site and surrounding land use.  The locations of 
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Fig. 2. Aerial view of the T0 research site and surrounding land use. The locations of the CO2 monitor and SMPS instrumentation are
denoted by an “x”.

the SMPS data set. Then the transmission efficiencies for
the Iowa SMPS were calculated to maximize hourly average
agreement with the BNL SMPS. These are similar to trans-
mission efficiencies measured using a reconstructed inlet af-
ter the study (Kalafut-Pettibone, 2009).

The APS data was corrected for inlet transmission effi-
ciency which ranged from 93 % transmission at 500 nm to
33 % transmission at 2.5 microns. To enable comparability
between the APS and SMPS size distribution, the APS data
(originally calibrated for aerodynamic diameter) was shifted
to the smaller equivalent electrical mobility diameters using
the approach of Khlystov et al. (2004). This requires an as-
sumed density (1.43 g cm−3 was used based on the Mexico
City density and composition as determined by DeCarlo et
al., 2008) and an assumption of spherical particles. After
application of these transmission efficiencies and the den-
sity shift, two important mismatches in our Mexico City
data were notable when doing instrument-to-instrument vali-
dation checks. The first mismatch was between the SMPS
and the APS, with the ratio between the distributions as
0.35 (APS/SMPS) at 480 nm (corresponds to 574 nm aero-
dynamic diameter). The second mismatch was that the to-
tal reconstructed mass [(SMPS volume + APS volume) times
density] was lower than it would need to be for comparison
with nearby PM2.5 continuous mass measurements.

In light of this limited agreement at 480 nm mobility di-
ameter, and lacking more size-specific data on the APS mea-
surement accuracy, two alternate final APS time series (e.g.
size distributions) were calculated. We denote a time series
created using a size independent correction (i.e. multiplying
by 0.35−1 or 2.86 to all sizes) as the “base” case. An alter-

nate, less aggressive correction was made using size depen-
dent counting efficiencies measured for submicron particles
(Leinert and Wiedensohler, 2000). The values are of 58 % at
0.51 microns (aerodynamic diameter) to 90 % at 1 micron;
the alternate treatment has no additional corrections to parti-
cle counts above 1.5 microns beyond the original transmis-
sion efficiencies.

The mismatch between APS and SMPS may be related to
two difficult issues that arise when using an APS in compar-
ison with mass and electrical mobility, especially in environ-
ments with a large fraction of combustion particles. There
is a known counting efficiency bias in the APS at sizes less
than about 1.3 microns and this is not accounted for in the al-
ternate data reduction. The effective density of 1.43 g cm−3

used in this work reflects the bulk density of the aerosol com-
ponents (combined in a mass weighted average according to
AMS measured mass), which may not be equal to the ef-
fective density of the particles needed for the conversion be-
tween mobility and electrical mobility. Studies have shown
size-dependent effective densities, effective densities of less
than unity in combustion environments, and increases in ef-
fective density as the result of photochemical aging (Geller
et al., 2006). A size and temporally varying effective density
could explain the scatter that we observed in the SMPS-APS
overlap when a fixed effective density was assumed. The
APS-SMPS mismatch did have a diurnal pattern (APS/SMPS
at 480 nm at a minimum from 10:00 p.m.–09:00 a.m. and at a
maximum from noon–04:00 p.m.). Such a pattern is consis-
tent with effective densities of<1 from combustion and in-
creases due to photochemical processing. While this is sug-
gestive that a time-varying correction is needed, additional
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number for Mexico City.  
 

Fig. 3. Time series data for 17 March, illustrating the method used
to retrieve the number-based emission factors based on the correla-
tion between CO2 and particle number for Mexico City.

information such as collocated impactor measurements, mea-
sured shape factors, or mass mobility distributions would be
necessary to apply this to the field study data.

The ratio of the alternate to base counts and emission fac-
tors are discussed in the results and discussion section. The
alternate treatment decreased recovered total aerosol vol-
ume by about 5 µm3 cm−3, decreased the correlation between
nephelometer extinction and SMPS + APS volume (R2 for
alternate processing was lower thanR2 for base), and did not
match as well as the base case for comparison of the recon-
structed mass with the RAMA network values. However, the
difference between the base and alternate assumptions par-
tially quantify APS measurement uncertainty.

The decision to jointly analyze the CO2 and number time
series was based on an initial inspection of the dataset, where
a Pearson correlation coefficient of 0.6 was noted between
fine particles and CO2; however, periods with much higher
correlation existed. The early morning hours had the high-
est correlation, with 4 h correlations from 04:00–08:00 a.m.
reaching 0.93 on some days. Figure 4 illustrates the correla-
tion coefficient between particle number and CO2 as a func-
tion of the time of day (a) and also includes a scatterplot of
number vs. CO2 for the entire measurement period (b). Fig-
ure 4c presents size resolved diurnal correlation coefficients.
These are relatively high for all sizes and times of day except
for ultrafine particles in the afternoon and super micron par-
ticles in the early evening. The high correlation during the
midday is due to simultaneously decreasing CO2 and par-
ticle concentrations at sizes greater than about 70 nm. The
blue colors show an anticorrelation between ultrafine parti-
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Figure 4. (a) Correlation coefficient of 10-minute averaged CO2 and total number over 4-
hour periods, (b) 10-minute averages of CO2 concentration versus particle number 
concentration for the entire period from March 9 to March 29 (squares, triangles and 
dashed lines highlight measurements obtained during new particle formation events) and 
(c) Correlation coefficient for various size ranges. Local time (x-axis) is the last hour of a 
4-hour time window over which correlation with CO2 is analyzed (e.g. hour 15 shows 
correlations from 11:00 until 15:00).  
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Fig. 4. (a)Correlation coefficient of 10-min averaged CO2 and total
number over 4-h periods,(b) 10-min averages of CO2 concentration
versus particle number concentration for the entire period from 9
March to 29 March (squares, triangles and dashed lines highlight
measurements obtained during new particle formation events) and
(c) correlation coefficient for various size ranges. Local time (x-
axis) is the last hour of a 4-h time window over which correlation
with CO2 is analyzed (e.g. hour 15 shows correlations from 11:00
until 15:00).

cles and CO2 in the afternoon. Although the biosphere respi-
ration contribution to the CO2 concentration would also be at
a maximum during the early morning, the biogenic sources
of CO2 were determined to be insignificant (emissions were
dominated by anthropogenic activity) according to flux mea-
surements of CO2 obtained during the campaign (Velasco et
al., 2009).
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The calculation of the number-based emission factor was
not done directly from the raw concentrations, but required
an additional data reduction step where the number and CO2
concentration time series were separated into a baseline com-
ponent and a “peak” component above baseline. This was
done at 10 min time resolution. The technique is an adap-
tation of previous emission factor calculations by Jiang et
al. (2005) and utilized a simple peak identification and quan-
tification scheme used by Watson and Chow (2001). In Jiang
et al. (2005), a mobile laboratory with fast (1-s) CO2 data,
used the 5th lowest 1 s reading in a 3 min (180 s) window as
the on-road background level. CO2 peaks were then calcu-
lated by subtracting this background. Similar background
subtraction was performed for all compounds of interest.
CO2 datapoints 42 ppm above background were included in
a database of “peaks” and the ratios of pollutants (above their
background concentrations) to the CO2 peaks was compiled,
and then averaged to determine the mean emission factor for
each species in question.

As opposed to Jiang et al. where 1–10 s data were available
for all species, and all measurements were collocated, in this
study there were relatively slow measurements (e.g. 2 min for
the BNL SMPS, and 5 min for the Iowa SMPS), and there
was a separation distance of 150 m between the CO2 mea-
surement and the particle measurement. This required the
adoption of an analysis using longer temporal averaging.

For isolation of number and CO2 peaks to compare in this
study, peaks were isolated relative to a baseline concentra-
tion calculated by the successive moving average technique
of Watson and Chow (2001). Illustrated for a 24 h period
in Fig. 3, the result of this technique is a 10 min time series
of baseline and peak concentrations. Figure 3a shows 1-min
CO2 and 2-min number concentrations, the 10-min averages
of both signals, and the baseline concentrations of each. Fig-
ure 3b shows the peaks above the baseline concentration for
both signals (which will be denoted as1CO2 and1Num)
which are used to calculate the emission factor. The base-
line and peak values were constructed as follows. Concentra-
tions were averaged to a 10 min time basis. This put all the
measurements on a common time basis regardless of their
native time resolution, which ranged from 0.1 s (CO2 con-
centration) to 5 min (University of Iowa SMPS). 6-h average
concentrations were compared to the 10 min averaged data,
and the lower of each pair was retained in a tentative base-
line time series. Then the tentative baseline was smoothed
using a 3-h averaging time, and the resulting values were
compared to the original 10 min time series, with retention
of the lower values in the tentative baseline. A third round
of averaging (1 h averaging time) and comparison was done
to yield a final baseline time series which represents the re-
gional background concentration plus the urban background.
Watson and Chow (2001) approximate influence distances
for short duration peaks using Pasquill Gifford curves (plot
of distance from source versus plume dimension). The esti-
mated horizontal plume dimensions are 70–1000 m at 2 km

away from a continuous source. Plumes of these dimen-
sions could cause short duration (<10 min) responses in the
samplers. In other words, the baseline represents a regional
background plus a well mixed urban background originating
from distances likely farther than 0.2–2 km away. Peaks are
caused by smaller plumes that can traverse the sampling site
in <10 min, which are likely from sources closer than 2 km.

The 50th percentile of the CO2 peak population
was 1.6 mg m−3 and the 95th percentile peak size was
25 mg m−3. To calculate emission factors, all CO2 peaks
above a threshold were selected, and the number/CO2 ratio
of each of these 10 min periods is calculated. A threshold of
6 mg m−3 of CO2 was used and sensitivity to this threshold
is discussed. The technique is applied to total number and
also to the number concentration in specific diameter bins to
give a size-resolved emission factor.

Emission factors determined at T0 are based on the ratio
of the change in particle concentration to the change in mass
concentration of CO2, e.g. “particle number cm−3 (mg CO2
m−3)−1”. Both concentrations are on an actual volume ba-
sis (not corrected to a standard pressure and temperature or
for water vapor). This can be easily converted to “particle
number (kg C)−1”, which is invariant to changes in pressure,
temperature, and water mixing ratio. Conversion to other
ratio based metrics, such as “particle number cm−3 (µmole
CO2 per mol)−1” require specification of the relevant temper-
ature and pressure, and whether the CO2 concentration is on
a dry or wet basis. The equation used to convert the measured
emission factors between various pressure, temperature, and
water vapor combinations is:

Cn,predict|T ,P,PH2O =

[Cn,measure/CCO2,measure]1.807
(P −PH2O)

1 bar

293 K

T
[χCO2]

whereCn,predict is the expected primary particle concentra-
tion in cm−3 at the specified temperature (T in K), total
pressure (P in bar), and water partial pressure (PH2O in
bar). Cn,measure/CCO2,measureis the original measured emis-
sion factor (in the current work in particle number cm−3 and
mg CO2 m−3, respectively, at local conditions).χCO2 is the
CO2 mixing ratio in µmole per mole dry air. 1.807 is a con-
version factor specific to the selected units.

4 Results and discussion

4.1 Summary statistics of dataset

For the common period (shared among the ground-based in-
struments) of 10 March to 25 March, the mean values and
distributions of the key experimental variables are given in
Table 2. The mean number concentration (as measured by
SMPS) in the 15–494 nm size range was 2.1×104 cm−3. The
mean CO2 concentration measured at T0 was 559 mg m−3

(392 µmoles mol−1). The conversion from CO2 mixing ratio

Atmos. Chem. Phys., 11, 8861–8881, 2011 www.atmos-chem-phys.net/11/8861/2011/
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Figure 4. (a) Correlation coefficient of 10-minute averaged CO2 and total number over 4-
hour periods, (b) 10-minute averages of CO2 concentration versus particle number 
concentration for the entire period from March 9 to March 29 (squares, triangles and 
dashed lines highlight measurements obtained during new particle formation events) and 
(c) Correlation coefficient for various size ranges. Local time (x-axis) is the last hour of a 
4-hour time window over which correlation with CO2 is analyzed (e.g. hour 15 shows 
correlations from 11:00 until 15:00).  
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Figure 5. Time series measurements made at the T0 research site during March 2006. a) 
Particle number concentration (SMPS) and CO2, b) Particle volume (SMPS and APS) 
and total aerosol scattering (nephelometer), c) estimated PM2.5 (SMPS and APS) and 
nearby (within 10 km) PM2.5 measurements from 3 different RAMA monitoring 
locations, d) diurnal average for CO2 and particle number concentration e) diurnal 
average for particle volume (SMPS, APS), extinction (nephelometer), and PM mass 
(RAMA), f) grand average wind rose for wind speed and direction at T0, in meters per 
second. 
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Fig. 5. Time series measurements made at the T0 research site during March 2006.(a) Particle number concentration (SMPS) and CO2,
(b) particle volume (SMPS and APS) and total aerosol scattering (nephelometer),(c) estimated PM2.5 (SMPS and APS) and nearby (within
10 km) PM2.5 measurements from 3 different RAMA monitoring locations,(d) diurnal average for CO2 and particle number concentration,
(e) diurnal average for particle volume (SMPS, APS), extinction (nephelometer), and PM mass (RAMA),(f) grand average wind rose for
wind speed and direction at T0, in meters per second.

to mass concentration was done continuously using simulta-
neous measurement of pressure and temperature as measured
adjacent to the CO2 monitor.

The time series of several of the key measurements in this
work are shown in Fig. 5. Because of the uncertainty in the
APS inlet transmission, several comparisons were made be-
tween metrics sensitive to aerosol volume and mass. Avail-
able at T0 was a 3-wavelength nephelometer, and the nearby
(within 10 km) hourly PM2.5 monitoring sites, operated by

the RAMA network. Figure 5a represents the time series of
number and CO2 concentration for the period from 10 March
to 25 March and illustrates the correlation between the two
signals. Figure 5b provides a time series of particulate matter
(PM) volume and aerosol scattering at 700 nm as measured
by the nephelometer for the same time period. PM volume
was then converted to PM mass using the assumed density
of 1.43 g cm−3 as previously discussed and for comparison
with local PM2.5 measurements (Fig. 5c). The correlation

www.atmos-chem-phys.net/11/8861/2011/ Atmos. Chem. Phys., 11, 8861–8881, 2011
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Table 2. Mean values and distributions of ground-based measurements at T0 from 10 March to 25 March 2006.

Measurement Mean Maximum Minimum

CO2 559 mg m−3 659 mg m−3 492 mg m−3

392 µmol mol−1 454 µmol mol−1 359 µmol mol−1

Particle number (BNL) 2.1×104 cm−3 5.7×104 cm−3 7.1×103 cm−3

Particle number (Iowa, not dried) 1.9×104 cm−3 4.1×104 cm−3 1.9×103 cm−3

Temperature 17.6◦C 29.4◦C 8.8◦C
Relative humidity 39.4 % 86.6 % 6.3 %

Table 3. Summary of new particle formation events during the
MILAGRO field campaign. The average wind dir represents the
wind direction averaged over the 10 min preceding the event and
the 10 min after the onset of the event.

Date Start time Growth rate Average wind
(CST) (nm h−1) dir. (degrees)

16 March 10:30, 12:50 16.5, 4.9 219,103
17 March 12:50 5.9 38
21 March 11:30 11.1 253
23 March 10:30 10.6 259
24 March 10:30 17.7 291
25 March 13:45 7.8 317

coefficient (r) of PM mass and aerosol scattering (neph-
elometer, 550 nm) was determined to be 0.84 (not shown).
The slope of the regression line, which represents the scatter-
ing per unit mass, is 4.1 m2 g−1 which is in the range of ex-
pected values for urban pollution (Bates et al., 2006). Diurnal
averages are provided in Fig. 5d and e. Aerosol number and
CO2 reached peak concentrations at 07:00–08:00 a.m. (all
times Central Standard Time, which is UTC− 6 h). CO2 and
particle number drop together due to boundary layer ventila-
tion from 09:00–11:00 a.m., and then CO2 continues to drop
to a minimum at 04:00 p.m., while particle number (on aver-
age) increases during the afternoon, due to higher numbers
at sizes below∼30 nm. Aerosol volume peaks from 08:00–
10:00 a.m., while extinction peaks at 10:00 a.m. as well. The
wind rose representing wind speed and direction for the pe-
riod from March 10 to 25 March (Fig. 5f) shows winds pre-
dominantly from the west and east, with the high wind ve-
locity periods from the east south east.

In order to further evaluate the APS data, a comparison
with the 700 nm nephelometer data was conducted. The to-
tal aerosol volume as determined by the SMPS and APS was
considered together with light scattering at 700 nm, for all
days with over 6 h of data (11 days total). Hours during new
particle formation were excluded. The average correlation
(R2) for the 11 days examined is 0.87. The same calcu-
lation was then repeated using only SMPS volume, rather

than SMPS+APS volume and the correlation (R2) decreased
to 0.74.

4.2 Ultrafine particle growth events

Conditions at T0 could often be characterized by highly cor-
related particle number and carbon dioxide concentrations,
indicative that particle number is controlled by primary emis-
sions. During new particle formation events, particle number
is no longer controlled by primary emissions and the corre-
lation between particle number and CO2 breaks down. This
can be observed in the 17 March time series of number con-
centration and CO2 shown in Fig. 3b, where peaks above
baseline of CO2 and number (1CO2 and 1Num) are cor-
related until the onset of the event shortly after 12:00 CST at
which point number concentration increases and CO2 levels
decrease.

Ultrafine particle growth events, which were qualitatively
identified by prominent and growing modes in the size range
10–15 nm, were observed on 6 of 16 (37.5 %) days sampled
at the T0 location. Events typically began between 10:30 and
13:00 local time. The growth rates of the ultrafine particles
varied between 4.9 and 17.7 nm h−1, which are somewhat
higher than the average reported range for other urban areas
(0.5–9 nm h−1) (Kulmala et al., 2004). Table 3 provides a
summary of the events and Fig. 6 shows the size-distribution
from 15–500 nm for the 6 days where new particle formation
occurred.

One commonality among all particle formation and
growth events is lower than average particle number con-
centration just prior to the onset of the event. Favorable
conditions for new particle formation often include low pre-
existing aerosol surface area, which acts as a sink for con-
densable vapors (Kulmala and Kerminen, 2008), and there-
fore this result is consistent with previous observations of
new particle formation in Mexico City (Dunn et al., 2004)
and various other locations (Clarke, 1993; Weber et al., 1997;
Kulmala et al., 2004). It is known that the Mexico City basin
experiences substantial ventilation during the afternoon (de
Foy et al., 2006, 2009; Banta, 1985) which likely provides
an explanation for rapid decreases in condensational surface
area. Five of six of the particle formation/growth events
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Figure 6. Colorplots of ultrafine growth events.  

Fig. 6. Colorplots of ultrafine growth events. Black lines show CO2
concentrations.

sampled in this study have decreases in CO2 and aerosol scat-
tering leading to an increase in number concentration, con-
sistent with previous observations.

4.3 Recovered emission factor

The recovery of the primary emission factor was done twice
– once with all available study hours, and once restricting
the dataset to the hours of 04:00–10:00 a.m. local time, the
time period with the strongest correlation between number
and carbon dioxide. Except for sections of the text and fig-
ures referring to the diurnal pattern of emission factors, the
result reported is based on the 04:00–10:00 a.m. restriction.
Sensitivity of the result to this choice is discussed below.

The average number and volume emission factors as de-
termined for Mexico City using the described method are
1.56×1015 particles (from 11 nm to 494 nm), and 9.48×1011

cubic microns (from 11 nm to 494 nm) per kg of carbon, re-
spectively. The mode of the number emission factor is be-
tween 25 and 32 nm, while the mode of the volume factor is
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Figure 7. Grand average number and volume emission factor distributions shown on both 
a log-linear (a) and a log-log (b) scale.  These distributions represent the emission factors 
as determined using the data from 4:00 AM to 10:00 AM CST only, which was the time 
period with the strongest correlation between number and carbon dioxide.  Error bars 
represent the 95% confidence interval based on variability in sampled values (see text for 
discussion of additional sources of uncertainty).  The single mode and the three mode 
lognormal fits are also shown (see Table 4, rows 1 and 4 respectively for parameters).    
 
 
 
 
 
 

(a) 

(b) 

Fig. 7. Grand average number and volume emission factor distribu-
tions shown on both a log-linear(a) and a log-log(b) scale. These
distributions represent the emission factors as determined using the
data from 04:00 a.m. to 10:00 a.m. CST only, which was the time
period with the strongest correlation between number and carbon
dioxide. Error bars represent the 95 % confidence interval based on
variability in sampled values (see text for discussion of additional
sources of uncertainty). The single mode and the three mode log-
normal fits are also shown (see Table 4, rows 1 and 4, respectively,
for parameters).

between 0.25 and 0.32 microns as shown in Fig. 7. The vol-
ume emission factor from 0.52 to 1.8 microns was 3.3×1011

and 1.3×1011 cubic microns per cm3 with the base and al-
ternate APS data reductions, respectively.

An approximate estimate of the total uncertainty in the
emission factor is done and includes contributions from both
method and instrument uncertainty, and sampling error. A
third source of error, representativeness error (e.g. how rep-
resentative of the entire airshed is the recovered emission
factor) is very difficult to quantify and is not considered in
this work. However, its importance should not be minimized.
The random uncertainty from the limited number of samples
taken is the easiest to quantify, and we have taken advantage
of the relatively large number of individual emission factors
(∼600) to calculate a 95 % confidence interval on the mean.
This contributes approximately±10 % to the grand average
emission factor.

The potential for error in determination of number by the
SMPS is∼15 % due primarily to uncertain flowrates, charg-
ing efficiency, and inlet efficiencies (Khlystov et al., 2004).
The uncertainty in the Iowa SMPS is likely higher due to the
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Table 4. Parameters for lognormal modal fits of the emission factor.

Fit Mode N # (kg C)−1 Dp (nm) log sigma Notes

Single mode fit, 80 % weighted
to number distribution, 20 %
weighted to volume distribution

1 1.78×1015 29.7 0.40 0.92R2 toward N; 0.80R2 rel-
ative to V

Three mode fit, 100 % weighted
toward number distribution

1 1.17×1015 32.7 0.31 0.99R2 toward N; 0.37R2 rel-
ative to V2 2.61×1014 23.0 0.15

3 2.36×1014 151 0.22

Three mode fit, 100 % weighted
toward volume distribution

1 2.32×1015 32.7 0.36 0.63R2 toward N; 0.97R2 rel-
ative to V2 6.05×1011 1339 0.60

3 2.48×1013 229 0.15

Three mode fit, 80 % weighted
to number distribution, 20 %
weighted to volume distribution

1 1.24×1015 32.7 0.34 0.99R2 toward N; 0.84R2 rel-
ative to V2 2.57×1014 23.4 0.15

3 1.66×1014 151 0.21

more severe inlet losses described in the experimental sec-
tion. However, the BNL size distribution is used preferen-
tially over the Iowa SMPS size distribution where available.
The potential uncertainty due to the threshold selection in
the calculation of the emission factor is thought to be within
20 % (see below).

Combining these three sources of potential error, we find
that the overall emission factor has a potential error of ap-
proximately 1.5. The uncertainty in the APS size range and
in the volume emission factor are larger. Also, the uncer-
tainty on emission factors for shorter periods (e.g. daily or
sub-daily periods) is higher.

As stated in the experimental section, the CO2 measure-
ment location and the number measurement location were
separated by 150 m, and true collocation would likely yield a
significant improvement in the power of this technique, pos-
sibly improving the error characteristics and definitely allow-
ing use of shorter averaging times, if desirable.

The emission factor with base case APS data reduction as-
sumptions was fit to establish the corresponding lognormal
mode parameters using constrained nonlinear optimization
of an objective function that weighted the normalized num-
ber distribution of the emission factor by 0.8 and the nor-
malized volume distribution of the emission factor by 0.2. A
constraint was put on the width of the modes such that log
σ was required to be 0.15 or higher; this avoids overly nar-
row peaks. A single mode fit achieved anR2 of 0.92 with
respect to the number distribution and anR2 of 0.80 with re-
spect to the volume distribution. This fit had parameters of
N 1.78×1015 particles per kg C,Dp of 30 nm, and logσ of
0.40 (shown in Figs. 7 and 9). Significant improvement in
the fit could be achieved but only by moving to 3 mode fits
(also shown in Figs. 7 and 9). The parameters of these fits are
shown in Table 4. The single mode fit parameters were very
insensitive to the relative weighting of number and volume.

Fitting based on volume only gave single mode (number size
distribution) parameters ofDp of 30 nm and logσ of 0.38.

Sensitivity of the emission factors to the CO2 thresh-
old used in the peak identification process was performed.
Higher emission factors resulted from the use of lower
thresholds. 6 mg CO2 m−3 (the 72nd percentile of the CO2
peaks) was selected as the best threshold because it repre-
sented a good compromise between the tendency to have
more emission factor values for small threshold values and
the tendency of the variability in emission factors to in-
crease substantially with small peaks. Using the threshold
of 25 mg m−3, the fewest number of peaks were isolated for
analysis. For example, the BNL instrument time series (re-
stricted to 04:00–10:00 a.m.) yields 84 peaks during the 16
days analyzed when a threshold of 25 mg m−3 is used; this
increases to 274, 311, 349, and 393 peaks using the 8, 6,
4, and 2 mg m−3 thresholds, respectively. The confidence
interval of the mean number emission factor was smallest
at 6 mg m−3 relative to those using small thresholds (more
values to average, but with a higher variability), and higher
thresholds (similar variability but fewer values informing
the average). Jiang et al. (2005) considered changes to the
threshold of±24 % and showed that the CO emission fac-
tor only changed by 1–4 % for this amount of change in
the threshold. A similar perturbation to our threshold (e.g.
4.56, 6, and 7.44 mg m−3) shows a larger variability in the
EF (17 % increase at 4.56 and 7 % decrease at 7.44). Based
on comparison of mean emission factors and their confidence
intervals at thresholds of 4, 6, 8 and 25 mg m−3, we estimate
threshold selection as causing uncertainty of approximately
20 %. Using 25 mg m−3, the recovered emission factor de-
creased by 48 % relative to the value at 6 mg m−3, while the
confidence interval widened. It is unclear whether the ob-
served decrease is due to differences in sources, differences
in plume processing, or to correlated errors between1Num
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Figure 8. Average emission factor versus time of day.  The numbers on the graph 
represent the total number of CO2 peaks that went into the calculation of the emission 
factor for each 3 hour period. 
 

Fig. 8. Average emission factor versus time of day. The numbers
on the graph represent the total number of CO2 peaks that went into
the calculation of the emission factor for each 3 h period.

and 1CO2. However, the number of these plumes (with
∼25 mg m−3 above baseline CO2) is small and basing the
overall emission factor on a larger sample is advisable. The
spectral shape of the recovered size-resolved emission factor
is insensitive to the threshold.

With the exception of Sect. 4.4, emission factors were cal-
culated using only peaks from 04:00 a.m. to 10:00 a.m., since
this is likely the most robust primary emission factor; this
practice therefore excludes the influence of the afternoon
hours which have small CO2 and number peaks (and thus
with considerable uncertainty in their ratio). Using all hours
instead of using the 04:00–10:00 a.m. period only caused
a decrease in the grand average emission factor in all size
ranges of the SMPS, with a magnitude of up to 20 %. In the
APS size range, the effect of broadening the emission factors
going into calculation of the grand average was to increase
the emission factor in all size bins, by a magnitude of up to
20 % for sizes between 0.5 and 1.8 microns, and a 32 % de-
crease from 1.8 to 2.5 microns.

4.4 Dependence of emission factors on time of day, day
of study, and wind direction

The average number emission factor as a function of time of
day, and day of the month were examined in order to deter-
mine the impact that meteorological changes, biomass burn-
ing, or new particle formation may have on the overall emis-
sion factor. In doing this analysis, the aforementioned re-
striction to only peaks from 04:00–10:00 a.m. must of course
be relaxed. And it should be noted that examination of di-
urnal patterns involves comparison of periods with varying
uncertainty in emission factors.

A regional scale overview of the meteorological condi-
tions during the MILAGRO campaign is provided by Fast
et al. (2007). Based on the meteorology, the campaign was
split into three regimes. The first regime occurred prior to
14 March and was characterized by dry, sunny conditions.
The second regime began with a “Norte” or cold-surge event,
which is characterized by northerly near-surface winds and
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Figure 9. Comparison of the measured emission factor distribution from Mexico City to 
experimentally determined, fleet averaged emission factors and a model assumed 
carbonaceous emission distribution. Panel a) provides a comparison on a log-linear plot, 
and panel b) shows the same comparison on a log-log plot.  The model assumed 
distribution is listed in arbitrary units to allow for comparison of the distribution shape.  
See Table 4 for parameters of the single mode (row 1) and three mode (row 4) lognormal 
fits of the emission factor. 
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distribution is listed in arbitrary units to allow for comparison of the distribution shape.  
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Fig. 9. Comparison of the measured emission factor distribution
from Mexico City to experimentally determined, fleet averaged
emission factors and a model assumed carbonaceous emission dis-
tribution. Panel(a) provides a comparison on a log-linear plot, and
panel(b) shows the same comparison on a log-log plot. The model
assumed distribution is listed in arbitrary units to allow for com-
parison of the distribution shape. See Table 4 for parameters of the
single mode (row 1) and three mode (row 4) lognormal fits of the
emission factor.

increased humidity on 14 March with a gradual drying of the
atmosphere over the next few days. A second norte event,
lasting only a few hours, passed through on 22 March bring-
ing light rain. The third regime began with the most sig-
nificant cold-surge on 23 March. Substantial precipitation
was seen on both the 24th and 25th. The impact of biomass
burning organic aerosol at T0 was characterized by Aiken
et al. (2010). Two high fire periods are identified from 11–
15 March and 17.5–23.5 March; a low fire period coincident
with increased precipitation is identified from 24–29 March.
Details of the ultrafine particle formation and growth events
observed at T0 are detailed in Table 3.

The average emission factor for each day of the study was
calculated. Day to day variation showed no statistical signifi-
cance with the exception of 2 days (14 March and 24 March)
which were slightly higher. This could not be explained by
local fire activity or unique meteorological conditions. It is
concluded that a time period longer than the 16 days ana-
lyzed here would be required to determine the correlation
between airmass origin and emission factor with statistical
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significance. The retrieval method works by selecting peak
areas above a baseline concentration, and slow increases in
particle concentration (or CO2), such as those that might oc-
cur from changes in regional biomass burning activity may
not influence the recovered emission factor. Days with new
particle formation and growth activity have similar recovered
emission factors as days without new particle formation and
growth, and thus the method is not influenced by particle for-
mation events.

The diurnal pattern of the emission factor is observed us-
ing 3-h averages as a function of time across all 16 days
(Fig. 8). The number on each bar represents the total num-
ber of CO2 peaks that were identified and used to calculate an
emission factor for each time period. As expected, the largest
number of CO2 peaks was identified from 06:00 to 09:00, co-
incident with the morning rush hour traffic. Relatively very
few peaks are detected from 12:00 to 18:00, during the time
which the basin experiences ventilation and dilution.

An analysis of the wind directional dependence was per-
formed, including plotting of pollution roses for number and
volume, pollution roses for emission factors, and conditional
probability functions for CO2 and emission factors. Nor-
malizing for frequency of different wind directions, com-
bined “number and CO2” plumes were about 2 to 4 times
more likely to originate from specific directions (the west,
from the south, and from the northeast) than from other di-
rections. These directions correspond to an industrial area
(to the west), Vallejo Ave. (to the west), Eje 4 Ave. (to the
south) and Eje Central Ave. (to the northeast). While CO2
had a directional signature, the emission factors themselves
were much less dependent on direction. The 10 min peri-
ods with highest number to CO2 peak size ratios preferen-
tially occurred under winds from the west. But more typi-
cal emission factors showed no directional dependence. In-
cidentally, the most common morning wind direction was
from the west, possibly contributing to the directionality of
the highest emission factors. The fact that emission factors
are largely non-directional eliminates the possibility of re-
covering source-specific emission factors without additional
source-specific markers. However, at the same time, it makes
the recovered emission factor potentially more representative
of a wide geographical area.

4.5 Comparison to emission factors from literature

The size-resolved number emission factors determined in
this work are compared to those of three different experimen-
tal studies, and the result is shown in Fig. 9. Additionally,
a representative size distribution used as input to a global
aerosol model (Spracklen et al., 2010) is included in the fig-
ure. The single and three mode lognormal distributions are
also shown.

The first study of interest was conducted in the Minneapo-
lis metropolitan area by Kittelson and colleagues in sum-
mer of 2002 (Kittelson et al., 2006; Johnson et al., 2005).

On-road mobile measurements including the size distribu-
tion from 10–300 nm, CO and CO2, were collected under
typical highway driving conditions. Then, the apportion-
ment between SI and diesel vehicles was calculated using a
differential traffic volume correlation method. CO2 and CO
contributions were apportioned using the same method, and
assuming these species represent the total carbon emitted, a
conversion to fuel specific emission factors was made. The
other two studies of interest were conducted in the Caldecott
Tunnel in Northern California. The tunnel has two separate
traffic bores; one which allows both heavy- and light-duty
traffic, and the second which allows light-duty traffic only.
In each of the tunnel studies, the emission factors are appor-
tioned between diesel and gasoline vehicles by comparing
the gasoline only bore to the mixed diesel and gasoline traf-
fic bore. Geller et al. (2005) conducted measurements dur-
ing the summer of 2004 which included the size distribution
from 7–270 nm, CO and CO2. Light-duty emission factors
were computed directly from the second bore, and were then
used to apportion emissions in the mixed traffic bore. Ban-
Weiss et al. (2010) conducted a similar study in the summer
of 2006, which included measurements of the size distribu-
tion from 10 to 290 nm, CO, and CO2. Their apportionment
calculations differed from Geller et al. in that they used CO2
as a tracer rather than CO, citing that CO emissions have de-
creased more for diesel heavy-duty vehicles in recent years.

All three studies concluded that diesel trucks emitted more
particles per kg of fuel burned than gasoline vehicles at all
measured sizes. The Mexico City emission factor distribu-
tion falls in between the light duty and diesel apportioned
emission factors as determined in Minnesota and California.
Of the experimentally determined emission factors, the Mex-
ico City emission factor has the largest peak diameter (in
the 25 to 32 nm size bin) while all others were determined
to be below 20 nm. Perhaps this is because the aerosols in
Mexico City are more aged in comparison, as supported by
the larger than average growth rates observed in the ultrafine
mode (Sect. 4.2). Alternatively, this could be due to differ-
ences in engine technology, or operation and maintenance
procedures, or due to different representative fleet mixtures.

Tunnel studies such as the ones completed in the Caldecott
tunnel, observe emissions after they have undergone “tailpipe
to roadway” dilution (Zhang et al., 2004). The on-road mea-
surements performed in Minnesota also observe emissions
under “tailpipe to roadway” conditions, although under a
wider variety of less controlled conditions. The measure-
ments taken in Mexico City are more highly diluted, and are
therefore thought to be ideal as inputs for 3-D models that do
not account for near-source plume processes.

Currently, multiple 3-D chemical transport and aerosol-
climate models represent the size distribution of carbona-
ceous emissions using lognormal modes with a number
median radius of 30 nm (Spracklen et al., 2010; Stier et
al., 2005). Then emission rates (Tg yr−1) compiled from
emission inventories are distributed across the representative
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log-normal distribution functions (Spracklen et al., 2010;
Dentener et al., 2006). For this reason, comparison on an
absolute scale with the emission factor presented here is dif-
ficult. However, the shape of model input emission distribu-
tion is compared to the emission factor distribution recovered
in this work in Fig. 9. While the mode of the two distribu-
tions is similar, the model assumed distribution is narrower
and therefore may potentially underestimate the number of
particles below 30 nm and above 40 nm relative to the mode.

The emission factor was also compared to published size-
resolved mass emission factors (from impactors applied to
dynamometer tests of vehicles in the United States) where it
was found that the field-based emission factor was larger at
sizes greater than 1 micron (Robert et al., 2007).

4.6 Application of emission factors to Mexico City
plume

The average emission factor of 425.4 particles cm−3 (mg
CO2 m−3)−1 was used to estimate the number concentra-
tion of primary particles in the aged Mexico City plume
based on CO2 measurements taken aboard the NASA DC-
8. The volume emission factor (through 2 microns) was
0.37 µm3 cm−3 (mg CO2 m−3)−1 using the base case data
processing assumptions. On a molar basis at the temperature,
pressure, and water partial pressure of the aircraft sampling
(296 K, 0.75 bar, 2.3 mbarPH2O), the emission factors are
568 particles cm−3 (µmol CO2 mol−1)−1 and 0.49 µm3 cm−3

(µmol CO2 mol−1)−1. At 1.013 bar and 293 K, the emission
factors are somewhat higher (775 and 0.67, respectively).
This estimated primary number concentration was compared
to number concentrations measured on the aircraft. Because
of extensive secondary particle formation and growth in the
plume, agreement between the value based on the urban pri-
mary size-resolved emission factor and the in situ measure-
ment is not expected; rather the difference may indicate the
extent of plume processing. The data used for this analysis
was taken on 11 March when the NASA DC-8 conducted
a flight in order to sample the aged Mexico City plume as
well as the near-source plume within the boundary layer. The
aircraft made a pass over the city (19.45 lat.−99.07 lon. at
2530 m a.s.l., and the Mexico City plume is easily identi-
fied by the CO2 mixing ratio gradient where concentrations
up to 400.5 µmol mol−1 are seen over the city, with a grad-
ual decrease to background levels (382 µmol mol−1) travel-
ing outward.

The number size distribution evolution at T0 during this
day had particle volume peaking at 08:00 CST, a minimum
in aerosol volume and aerosol scattering at noon, aerosol
growth and mass increases during the early afternoon, and
a significant drop in aerosol volume and aerosol scattering
from an air mass change at∼16:30 CST. The DC-8 flew over
Mexico City at high altitude (∼9 km a.s.l.) and then flew
north over T0, T1 and T2 at an altitude of∼2.5 km a.s.l.
or <1 km above ground. In this analysis, we used five
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Figure 10. Comparison of the measured particle number concentration (red), calculated 
baseline number concentration (green), and number concentration with background and 
anticipated primary number concentration from the emission factor of this work  (dashed 
red). Measurements of CO2 and particle number concentration were obtained on March 
11, 2006 aboard the NASA DC-8 flight which transected the Mexico City plume (14:15-
14:30 CST).  The emission factor used to predict the increase in particle number is 568 
particles cm-3 (µmole CO2/mol)-1.  

Fig. 10.Comparison of the measured particle number concentration
(red), calculated baseline number concentration (green), and num-
ber concentration with background and anticipated primary num-
ber concentration from the emission factor of this work (dashed
red). Measurements of CO2 and particle number concentration
were obtained on 11 March 2006 aboard the NASA DC-8 flight
which transected the Mexico City plume (14:15–14:30 CST). The
emission factor used to predict the increase in particle number is
568 particles cm−3 (µmole CO2 mol−1)−1.

measurements of the particle size distribution beginning at
14:19 CST and covering a 10-min duration. The first mea-
surement was obtained over the city (0 km), followed by
measurements at 15.7, 30.7, 46.6 and 61.8 km (where CO2
has decreased to within 0.5 µmol mol−1 of the background
concentration). Measurements of CO2 were obtained at 1-s
resolution throughout the duration (Vay et al., 2009). The
photochemical age at the time of each number concentra-
tion measurement was calculated using the measured ratio
of toluene to benzene as described by Warneke et al. (2007).

For this comparison, the baseline CO2 and particle number
concentrations aloft were determined using the same succes-
sive moving average subtraction method that was applied to
the ground based measurements. During this period (con-
sisting of five datapoints), the baseline of number concen-
tration (through 1 micron) from the successive subtraction
technique averages 3997 cm−3 and ranges from 3512 cm−3

to 4388 cm−3. The results from this analysis are provided in
Fig. 10. The1CO2 (green), which is the increase in CO2
mixing ratio above a baseline as measured by the aircraft,
is plotted on the right axis versus photochemical age. The
expected increase in particle number concentration above a
baseline (1Num) from application of the primary emission
factor is calculated by multiplying1CO2 by the average
emission factor and is represented by the dashed line. The
actual measured1Num is represented by the solid red line.

As shown in Fig. 10, the measured increase in particle
number concentration is significantly higher than the ex-
pected value from application of the emission factor deter-
mined at the ground. Our speculation is that there is a source
of particles during plume aging that significantly increases
particle number while leaving CO2 unchanged. New particle
formation is a possible explanation for the elevated particle
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Figure 11.  Measured number and volume distributions in the DC-8 plume near Mexico 
City during the March 11, 2006 flight at average altitude of 342 m above ground at 14:20 
local time.  Panel (a) shows measured number size distributions (symbols) with 
calculated size distributions (lines) based on a regional background plus the primary 
emission factor (this work) times the CO2 increment above background.  Panel (b) shows 
the same as (a) except number size distributions have been converted to volume 
distribution.  Panel (c) shows the difference between measurement and background + 
primary, normalized to the CO2 increment in the plume.  Photochemical ages, calculated 
using the benzene/toluene ratio relative to the ratio at 14:19, are shown by each 
distribution.  Integrals of the volume distributions through 2 microns in (c) are 0.96±0.16, 
0.97±0.17, 2.1±1.1, and 1.8±2.1 µm3 cm-3 per ppm.  For reference, the primary emission 
factor (through 2 microns) is 0.49 µm3 cm-3 per ppm.   

Fig. 11. Measured number and volume distributions in the DC-8
plume near Mexico City during the 11 March 2006 flight at average
altitude of 342 m above ground at 14:20 local time. Panel(a) shows
measured number size distributions (symbols) with calculated size
distributions (lines) based on a regional background plus the pri-
mary emission factor (this work) times the CO2 increment above
background. Panel(b) shows the same as(a) except num-
ber size distributions have been converted to volume distribution.
Panel (c) shows the difference between measurement and back-
ground + primary, normalized to the CO2 increment in the plume.
Photochemical ages, calculated using the benzene/toluene ratio rel-
ative to the ratio at 14:19, are shown by each distribution. In-
tegrals of the volume distributions through 2 microns in(c) are
0.96± 0.16, 0.97± 0.17, 2.1± 1.1, and 1.8± 2.1 µm3 cm−3 per
ppm. For reference, the primary emission factor (through 2 mi-
crons) is 0.49 µm3 cm−3 per ppm.

number concentrations. The specific appearance of Fig. 10
is sensitive to the number baseline used to determine the in-
crease relative to background. The increase in the baseline
by 4300 cm−3 (on average) would bring the predicted (from
primary emissions alone)1Num and the measured1Num
into much closer agreement. The interpretation of this new
background (which would be on average 8300 cm−3) is that
it would require a particle source not associated with CO2
– and this could be from new particle formation, or from
other non-combustion sources. For comparison, the average
number baseline calculated for all samples below 3 km a.s.l.
was 1800 cm−3 and the 90th percentile of the low altitude
(<3 km a.s.l.) datapoints was 3600 cm−3, so 8300 cm−3

would be considered a high background value. The aver-

age total number concentration at altitudes<3 km a.s.l. is
3400 cm−3.

Figure 11 shows the analysis using the size resolved mea-
surements (and the size resolved primary emission factor,
represented by a single lognormal mode as discussed above)
from the DC-8 rather than the total number. The four dis-
tributions (in symbols) shown on the graphs are labeled ac-
cording to the time that the DC-8 made the corresponding
measurement as it transected the plume (14:19, 14:21, 14:23,
and 14:25). Rather than refer to each of the four traces by the
time the measurement was made, it is informative to inter-
pret the excess volume changes as a function of processing
time in the atmosphere. The photochemical age (calculated
using benzene:tolune) as calculated for measurements made
at 14:19 CST was set to 0 h as a point of reference. Based on
this information, the photochemical age of the measurement
at 14:21 is 2 h, 12.8 h at 14:23, and 15 h at 14:25 (shown in
parentheses in the legend).

Figure 11a shows the measured number distribution (sym-
bols) and the number size distribution based only on ex-
trapolation of the primary emission factor to the plume
(lines). The prediction accounting for primary emissions
only is equal to a background distribution plus the emis-
sion factor multiplied by the increment in CO2 above back-
ground (1CO2). The shape of the background distribution
is calculated as the average of the measured number dis-
tributions from 14:16–14:27 CST, and the number is fixed
at 3997 particles cm−3 (the background total number con-
centration calculated above). Both this shape and absolute
number are uncertain. But even allowing for a higher back-
ground, the measured particle concentrations are well in ex-
cess of the “background plus primary” values at less than
40 nm for three of the four distributions. At sizes from 40–
100 nm, the measured distribution is higher for three of the
four distributions.

Figure 11b and c focuses on the aerosol volume distribu-
tion. Figure 11b graphs volume distributions based on mea-
surements and on the primary emission factor of this work
plus background. The background distribution function is
calculated as the minimum of the volume distributions from
14:16–14:27 CST. The integral of this background volume
distribution through 2 microns is 3.59 µm3 cm−3. The inte-
gral of the volume distributions in Fig. 11b range from 5.6–
18.8 µm3 cm−3.

Figure 11c shows the volume distributions normalized to
the CO2 increment above baseline. Consistent with the con-
clusions of Kleinman et al. (2009) the volume integral (and
also the number concentration from 0.1–1 microns, which is
well correlated with volume) increase significantly with pho-
tochemical age; furthermore the change in shape (increase in
volume without significant increase in mean size) is consis-
tent with condensational growth rather than volume growth.
While the number of measurements in this work is insuffi-
cient to show if this increase is linear with photochemical age
as shown by Kleinman et al., the apparent secondary volume
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can be compared to the primary emitted volume from the
emission factor of this work. In the 14:19 distribution, the
volume above the calculated baseline (through 2 microns)
is 1.38 µm3 cm−3 per µmol CO2 mol−1, while the primary
emission factor calculated at T0 (to within a factor 1.5) is
0.49. Thus the primary emissions account for only∼36 %
of the volume below 2 microns, even in this relatively fresh
sample. In the later samples with VOC ages of 13–15 h, the
fraction explained by the primary emissions drops to∼20 %.

Using the CO to CO2 molar ratio of 0.045 determined
in from aircraft measurements of the Mexico City plume
(Vay et al., 2009) one can convert the CO2 based emis-
sion factors recovered in this work to CO-based emission
factors. The emission factor of 775 particles cm−3 (µmol
CO2 mol−1)−1 used above converts to 17 223 particles cm−3

(µmol CO mol−1)−1 at 1.013 bar and 293 K. The volume
emission factor of 0.67 µm3 cm−3 (µmol CO2 mol−1)−1

(through 2 microns) converts to 14.9 µm3 cm−3 per
µmol mol−1 of CO. The volume emission factor through
0.44 microns (which matches the upper size limit of the
DMA in Kleinman et al.) is then 11.9 µm3 cm−3 per
µmol mol−1 of CO. From Fig. 2 in Kleinman et al. (2009),
the y intercept of the DMA volume versus photochemical
age is∼11 µm3 cm−3 per µmol mol−1 of CO.

This preliminary analysis of a small number of distribu-
tions from the DC-8, normalized to CO2 and referenced to
a primary emission factor, is consistent with the more com-
prehensive analysis of aerosol aging on the G-1 aircraft. The
primary emission factor of this work accounts for a fraction
of the observed volume aloft close to Mexico City ranging
from ∼20–36 %. The increase in aerosol volume relative to a
marker of dilution (CO2 increment above baseline) is similar
to that documented by Kleinman et al. with a larger dataset
from the G-1. The primary emission factor also cannot ac-
count for the observed aerosol number distribution aloft, par-
ticularly below 100 nm. The mismatch is not systematic with
photochemical age (as it appears to be for aerosol volume).
The difference is likely due to secondary aerosol formation
in the plume.

5 Conclusions

Measurements of the aerosol size distribution from 11 nm
to 2.5 microns were made in Mexico City at the T0 site in
March 2006, during the MILAGRO field campaign. Morning
conditions included high particle mass concentrations, low
mixing heights, and highly correlated particle number and
CO2 concentrations. Mean concentrations of particle num-
ber and volume are: 20 800 cm−3 and 18 600 cm−3 (from
the BNL and Iowa SMPS, respectively), and 15.4, 12.0, and
10.1 µm3 cm−3 (from the BNL SMPS, Iowa SMPS, and APS
respectively). Size ranges for these summary values run from
15–494 nm, 11–478 nm, and 0.56–2.5 µm, respectively; for

the APS size range of 0.56–2.5 µm, the summary value uses
the base case data reduction assumption.

Ultrafine particle growth events, defined as a prominent
growing mode at 10–15 nm, were observed on 6 of 16
(37.5 %) days sampled at the T0 location. Events typically
began between 10:30 and 13:00 local time. The growth rates
of the ultrafine particles varied between 4.9 and 17.7 nm h−1.

Average size-resolved and total number- and volume-
based emission factors for combustion sources impacting T0
have been determined using comparison of the areas of par-
ticle number and CO2 concentration peaks. The analysis is
most sensitive to peaks smaller than 1 h in time duration, and
is insensitive to slow changes in the CO2 and particle num-
ber baselines. The technique employed in the current work is
somewhat sensitive to the CO2 peak threshold selection used,
but is not sensitive to afternoon nucleation events, which hap-
pen during a time when CO2 does not peak above the thresh-
old. The number emission and volume emission factors are
1.56×1015 particles, and 9.48×1011 cubic microns, per kg
of carbon, respectively for the particle size distribution from
11 nm to 494 nm. The uncertainty of the number emission
factor is approximately plus or minus 50 %. In the APS size
range, the uncertainty is larger and the mismatch between the
SMPS and APS counts using the base case data processing
assumptions indicate that further work is needed on APS in-
let design, effective density, and data processing. The mode
of the number emission factor was between 25 and 32 nm,
while the mode of the volume factor was between 0.25 and
0.32 microns.

Representing the emission factor as log normal modes
yields parameters that may facilitate intercomparison of the
emission factor and its use in modeling studies. For exam-
ple, a single lognormal mode fit achieved anR2 of 0.92 with
respect to the number distribution and anR2 of 0.80 with re-
spect to the volume distribution. This fit had parameters of
N equal to 1.78×1015 particles per kg C,Dp of 30 nm, and
logσ of 0.40 (shown in Figs. 7 and 9). While CO2 and parti-
cle number exhibited preference for specific directions as de-
termined by conditional probability of peaks versus wind di-
rection, emission factors were largely insensitive to wind di-
rection. While this limits potential to isolate specific sources,
it does perhaps increase the ability to generalize the emission
factor to wider parts of the Mexico City airshed.

The recovered emission factor resembles those used in
some global modeling studies to represent carbonaceous
aerosols. It also has a large number of common features
with tunnel and chase studies aimed at isolating vehicle emis-
sion factors. The size-resolved emission factor from Mexico
City is between several of the light-duty (lower emission fac-
tor) and heavy-duty (higher emission factor) emission fac-
tors from the United States. At sizes smaller than 30 nm, the
emission factor is lower than many vehicular emission fac-
tors, possibly due to the greater degree of scavenging of ul-
trafine particles between the point of emission and the point
of sampling in our study versus the tunnel and chase studies.
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At sizes larger than 30 nm, the emission factors from Mex-
ico City are larger than several published vehicular emission
factors.

Better collocation of the CO2, meteorology, and number
size distribution measurement, and the use of faster instru-
mentation for the size distribution would increase the power
of this technique to isolate shorter duration peaks and elim-
inate sources of uncertainty in the emission factor (although
much of the variability is real and would remain).

Comparison of the size-resolved primary emission factor
to the number distribution in the Mexico City plume aloft,
as measured by the NASA DC-8 on 11 March 2006, was
conducted. A plume with CO2 peaking at 11 µmol mol−1

above background was isolated. The emission factor of this
work explains (at 11 µmol CO2 mol−1 enhancement) only
about 6300 cm−3 of the number enhancement (which totaled
16 000 cm−3 above background). This relative underpredic-
tion continued in subsequent samples with lower CO2 en-
hancements but was not correlated with photochemical age.
The recovered emission factor was consistent with recent
work showing that the ratio of total to primary aerosol in ur-
ban plumes can quickly grow to values of 2 to 5.
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